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Abstract. Provable entanglement has been shown to be a necessary precondition for unconditionally secure
key generation in the context of quantum cryptographic protocols. We estimate the maximal threshold
disturbance up to which the two legitimate users can prove the presence of quantum correlations in their
data, in the context of the four- and six-state quantum key-distribution protocols, under the assumption of
coherent attacks. Moreover, we investigate the conditions under which an eavesdropper can saturate these
bounds, by means of incoherent and two-qubit coherent attacks. A direct connection between entanglement
distillation and classical advantage distillation is also presented.

PACS. 03.67.Dd Quantum cryptography – 03.67.Hk Quantum communication

1 Introduction

Quantum key-distribution (QKD) protocols exploit
quantum correlations in order to establish a secret key
between two legitimate users (Alice and Bob). In a typ-
ical quantum cryptographic scheme, after the transmis-
sion stage Alice and Bob must process their raw key, in
order to end up with identical random keys about which
an adversary (Eve) has negligible information. In princi-
ple, classical as well as quantum algorithms (distillation
protocols) can be used for this post-processing [1–10]. In
any case, it is necessary for Alice and Bob to estimate the
error rate in their sifted key, for the purpose of detecting
the presence of Eve on the channel.

An important quantity for any QKD protocol is the
threshold disturbance i.e., the maximal disturbance or
quantum bit error rate (QBER) which can be tolerated by
Alice and Bob for being capable of producing a secret key.
This threshold disturbance quantifies the robustness of the
QKD scheme under consideration against a specific eaves-
dropping strategy, and depends on the algorithm that
Alice and Bob are using for post-processing their raw key.
Up to date, the robustness of the four-state (BB84) [11]
and the six-state [12] QKD protocols has been mainly dis-
cussed on the basis of the so-called Csiszár-Körner cri-
terion [6] and/or incoherent attacks, and various bounds
have been obtained [13–21]. Moreover, it is also known
that a necessary precondition for unconditionally secure
QKD is that the correlations established between Alice
and Bob during the state distribution cannot be explained
in the framework of separable states (provable entangle-
ment) [22,23]. Clearly, the threshold disturbance up to
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which this precondition is satisfied under the assumption
of general coherent (joint) attacks, quantifies the ultimate
robustness bound of a particular QKD protocol.

In a recent paper [24], we proved that for QKD pro-
tocols using two mutually unbiased bases, this threshold
disturbance for provable entanglement (robustness bound)
scales with the dimension d of the information carriers as
(d−1)/2d. Thus for the BB84 QKD protocol (d = 2) [11],
Alice and Bob always share provable entanglement for es-
timated disturbances below 1/4. Extending our studies,
in this paper it is shown that the corresponding threshold
disturbance for entanglement distillation in the context of
the six-state QKD protocol [12] is 1/3.

Our studies show that even the most powerful
eavesdropping attacks are not able to disentangle the two
legitimate users for estimated disturbances below these
borders. In other words, Eve is not able to decrease the
robustness of the protocols. The natural question arises,
however, is whether and at which cost these disentangle-
ment thresholds can be attained in the framework of eaves-
dropping attacks that maximize Eve’s properties (infor-
mation gain and/or probability of success in guessing). In
this paper we address this open question in the context of
incoherent as well as two-qubit coherent attacks. In partic-
ular, we present evidence that in the limit of many pairs,
coherent attacks might be able to disentangle the two hon-
est parties at the lowest threshold disturbance while si-
multaneously maximizing Eve’s probability of success in
guessing correctly the transmitted signal.

This paper is organized as follows: in Section 2 we
briefly describe the prepare-and-measure as well as the
associated entanglement-based versions of the BB84 and
the six-state QKD protocols. The corresponding threshold
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disturbances for provable entanglement (robustness
bounds) are derived in Section 3, while in Section 4 we in-
vestigate the cost at which an eavesdropper can saturate
these bounds. A link between entanglement distillation
and classical advantage distillation protocols is discussed
in Section 5.

2 Basic facts about BB84 and six-state
protocols

For the sake of completeness, in this section we briefly
summarize basic facts about the two qubit-based QKD
protocols especially in connection with their verification-
test stage.

2.1 Prepare-and-measure schemes

In the prepare-and-measure BB84 protocol [11], Alice
sends a sequence of qubits to Bob each of which is ran-
domly prepared in one of the basis states { |0〉, |1〉} or
{ |0̄〉, |1̄〉} which are eigenstates of two maximally conju-
gated physical variables, namely the two Pauli spin oper-
ators Z and X . The eigenstates of Z, i.e. { |0〉, |1〉}, and
of X , i.e. { |0̄〉, |1̄〉}, are related by the Hadamard trans-
formation

H =
1√
2

(
1 1
1 −1

)
, (1)

i.e. |̄i〉 =
∑

j Hij |j〉 (i, j ∈ {0, 1}). In the computational
basis { |0〉, |1〉}, the Pauli spin operators are represented
by the matrices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z=

(
1 0
0 −1

)
. (2)

Bob measures the received qubits randomly in one of the
two bases. After the transmission stage, Alice and Bob ap-
ply a random permutation of their data and publicly dis-
cuss the bases chosen, discarding all the bits where they
have selected different bases. Subsequently, they randomly
select a number of the bits from the remaining random
key (sifted key) and determine their error probability or
QBER. If, as a result of a noisy quantum channel or of an
eavesdropper, the estimated QBER is too high the pro-
tocol is aborted. Otherwise, Alice and Bob perform error
correction and privacy amplification with one- or two-way
classical communication, in order to obtain a smaller num-
ber of secret and perfectly correlated random bits [1–5].

The six-state prepare-and-measure scheme is quite
similar to the BB84 (four-state) scheme [12]. More pre-
cisely, Alice and Bob use at random three bases namely,
the two bases used in the BB84 plus an additional one
{ |¯̄0〉, |¯̄1〉} which corresponds to the Y Pauli operator. In
analogy to BB84, the three bases are related (up to a
global phase) via the transformation

T =
1√
2

(
1 −i
1 i

)
, (3)

i.e. |̄i〉 =
∑

j Tij |j〉 and |̄̄i〉 =
∑

j T 2
ij |j〉 with i, j ∈ {0, 1}.

2.2 Entanglement-based schemes

It has been shown that, from the point of view of
an arbitrarily powerful eavesdropper, each one of these
two prepare-and-measure schemes is equivalent to an
entanglement-based QKD protocol [25–31]. These latter
forms of the protocols offer advantages, in particular with
respect to questions concerning their unconditional secu-
rity, and work as follows: Alice prepares each of, say 2n,
entangled-qubit pairs in a particular Bell state [32], say
|Ψ−〉 ≡ ( |0A1B〉− |1A0B〉)/

√
2 (where the subscripts A, B

refer to Alice and Bob, respectively). This state is invari-
ant under any unitary transformation of the form UA⊗UB.
Alice keeps half of each pair and submits the other half
to Bob after having applied a random unitary transforma-
tion chosen either from the set {1,H} (two-basis protocol)
or from the set {1, T , T 2} (three-basis protocol).

At the end of the transmission stage, Alice announces
publicly the transformations she applied on the transmit-
ted qubits and Bob reverses all of them. At this stage,
in an ideal scenario Alice and Bob would share 2n pairs
in the state |Ψ−〉⊗2n . Due to channel noise and the pres-
ence of a possible eavesdropper, however, at the end of the
transmission stage all the 2n entangled-qubit pairs will be
corrupted. In fact, they will be entangled among them-
selves as well as with Eve’s probe. Thus, the next step for
Alice and Bob is to estimate the number of singlets among
the 2n shared pairs (alternatively to estimate the frac-
tion of pairs which are in error). To this end, they apply
a verification test which proceeds as follows: firstly, Alice
and Bob permute randomly all the pairs, distributing thus
any influence of the channel noise and the eavesdropper
equally among all the pairs [4,27]. Afterwards, they ran-
domly select a number (say nc) of the pairs as check pairs,
they measure each one of them separately along a com-
mon basis and they publicly compare their outcomes. The
influence of channel noise or of an eavesdropper is thus
quantified by the average estimated QBER of the check
pairs while, assuming that the check pairs constitute a
fair sample [33], the estimated QBER applies also to the
remaining, yet unmeasured, 2n− nc pairs.

After the verification test all the check pairs are dis-
missed and, if the QBER is too high the protocol is
aborted. Otherwise, Alice and Bob apply an appropriate
entanglement purification protocol (EPP) with classical
one- or two-way communication [8,9] on the remaining
2n − nc pairs, in order to distill a smaller number of al-
most pure entangled-qubit pairs. Finally, measuring these
almost perfectly entangled-qubit pairs in a common basis,
Alice and Bob obtain a secret random key, about which
an adversary has negligible information.

2.3 Verification test and confidence level

In closing this introductory part of the paper let us
recall some known basic facts about the verification
test which are necessary for the subsequent discussion.
The reasons for which such a classical random sampling
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procedure applies to a quantum scenario have been thor-
oughly discussed in the literature [4,26–31]. Briefly, the
commuting-observables idea allows us to reduce any quan-
tum eavesdropping attack (even a joint one) to a classical
probabilistic cheating strategy, for which classical proba-
bility theory can be safely applied [26,29]. Furthermore,
Eve does not know in advance which pairs will be used for
quality checks and which pairs will contribute to the fi-
nal key. Thus she is not able to treat them differently and
the check pairs constitute a fair [33] classical random sam-
ple of all the pairs [4,26,27]. By invoking the verification
test therefore the two legitimate users can be confident
that (with high probability) the estimated error rate is
also the error rate they would have measured if they were
able to perform a Bell measurement projecting their pairs
onto a 2n-pair Bell basis [26,29,30]. The confidence level
is determined by classical random sampling theory [34].
In particular, the conditional probability that the verifi-
cation test is passed given that Alice and Bob underesti-
mate the error rate in their pairs is exponentially small
in the sample-size nc (i.e., ∼2−nc) [26,29]. In other words
the probability that Eve cheats successfully can be made
arbitrarily small by choosing a sufficiently large sample.

3 Provable entanglement and threshold
disturbances

According to a recent observation, a necessary precondi-
tion for secret key distillation is that the correlations es-
tablished between Alice and Bob during the state distri-
bution cannot be explained by a separable state [22,23].
Throughout this work, we consider that Alice and Bob
focus on the sifted key during the post-processing (i.e.,
they discard immediately all the polarization data for
which they have used different bases) and that they treat
each pair independently. Thus, according to the aforemen-
tioned precondition, given a particular value of the es-
timated QBER (observable), the task of Alice and Bob
is to infer whether they share provable entanglement or
not. Thereby, entanglement is considered to be provable
if Alice’s and Bob’s correlations cannot be explained by
a separable state within the framework of the protocols
(including post-processing) and observables under consid-
eration.

Recently [24], for the same post-processing, we
estimated the threshold disturbance for provable
entanglement in the context of two-basis qudit-based
QKD protocols under the assumption of joint eavesdrop-
ping attacks. In particular, we showed that for estimated
disturbances below (d − 1)/2d (where d is the size of the
information carriers), Alice and Bob can be confident
that they share provable entanglement with probability
exponentially close to one (see Sect. 2.3). In this section,
for the sake of completeness, we briefly recapitulate the
main steps of our proof adapted to the BB84 scheme.
Subsequently, along the same lines, we estimate the
corresponding threshold disturbance for the six-state
QKD scheme. For the sake of consistency, we will adopt

the entanglement-based versions of the protocols. We
would like to stress, however, that the estimated threshold
disturbances characterize both versions of the protocols.

3.1 BB84 protocol

Given the unitarity and hermiticity of H, the average dis-
turbance (average error probability per qubit pair), that
Alice and Bob estimate during the verification test is given
by [4,24,27]

D =
1

2nc

∑
b=0,1

nc∑
ji;i=1

TrA,B

{[
Hb

AB P Hb
AB

]
ji

ρAB

}
, (4)

with the projector [35]

Pji =
∑
l=0,1

|lA, lB〉〈lA, lB| = |Φ+〉〈Φ+| + |Φ−〉〈Φ−| , (5)

and Hb
AB ≡ Hb

A ⊗ Hb
B. The last equality in (5) indicates

that the verification test is nothing more than a quality-
check test of the fidelity of the 2n pairs with respect to
the ideal state |Ψ−〉⊗2n [4,26–31]. The state ρAB in equa-
tion (4) denotes the reduced density operator of Alice and
Bob for all 2n pairs while the index ji indicates that the
corresponding physical observable refers to the jith ran-
domly selected qubit pair. The powers of the Hadamard
transformations Hb, with b ∈ {0, 1}, reflect the fact that
the errors in the sifted key originate from measurements
in both complementary bases which have been selected
randomly by Alice and Bob with equal probabilities.

As we mentioned in Section 2.3 one of the crucial cor-
nerstones for the unconditional security of the protocol is
that Eve does not know in advance which pairs will be
used for quality checks and which pairs will contribute
to the final key. Thus she is not able to treat them dif-
ferently and the check pairs constitute a classical ran-
dom sample of all the pairs [4,26–28]. To ensure such
a homogenization, Alice and Bob permute all of their
pairs randomly before the verification stage. In view of
this homogenization, the eavesdropping attack (although
a joint one) becomes symmetric on all the pairs [4,27]
i.e., ρ

(1)
AB = ρ

(2)
AB = · · · = ρ

(2n)
AB . Here, the reduced den-

sity operator of Alice’s and Bob’ s kth pair is denoted by
ρ
(k)
AB = Tr( �k)

AB(ρAB) and Tr( �k)
AB indicates the tracing (aver-

aging) procedure over all the qubit pairs except the kth
one. Accordingly, the average estimated disturbance (4)
reads [24]

D =
1
2

1∑
b=0

Tr(j1)A,B

{[
(Hb

A ⊗Hb
B) P (Hb

A ⊗Hb
B)

]
j1

ρ
(j1)
AB

}

(6)

where Tr(j1)
A,B denotes the tracing procedure over the j1th

qubit pair of Alice and Bob. So, an arbitrary eavesdrop-
ping attack which gives rise to a particular reduced single-
pair state ρ

(j1)
AB is indistinguishable, from the point of view
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of the estimated average disturbance, from a correspond-
ing collective (individual) attack which results in a decor-
related 2n-pair state of the form

⊗2n
j=1 ρ

(j)
AB.

Our purpose now is to estimate the threshold distur-
bance Dth such that for any estimated D < Dth Alice and
Bob can be confident that their correlations cannot have
emerged from a separable state. To this end let us explore
the symmetries underlying the observable under consid-
eration i.e., the estimated average QBER. According to
equations (6) and (5), D is invariant under the transfor-
mations

(l, b) → (l ⊕2 1, b), (l, b) → (l, b ⊕2 1), (7)

where ⊕2 denotes addition modulo 2. This invariance im-
plies that the reduced density operators ρ

(j1)
AB and

ρ̃
(j1)
AB =

1
8

∑
g∈G1,h∈G2

U(h)U(g)ρ(j1)
AB U(g)†U(h)† (8)

give rise to the same observed value of the QBER [24].
The unitary and hermitian operators appearing in equa-
tion (8) form unitary representations of two discrete
Abelian groups G1 = {g1, g2, g3, g4} and G2 = {h1, h2},
and are given by

U(g1) = XA ⊗XB, U(g2) = ZA ⊗ZB,

U(g3) = −YA ⊗ YB , U(g4) = 1A ⊗ 1B, (9)

and

U(h1) = HA ⊗HB, U(h2) = 1A ⊗ 1B. (10)

Moreover, invariance of the average QBER under the sym-
metry transformations of equation (7) induces invariance
of ρ̃

(j1)
AB under both discrete Abelian groups G1 and G2.
The key point is now that ρ

(j1)
AB and ρ̃

(j1)
AB differ by local

unitary operations and convex summation. Thus the den-
sity operator ρ

(j1)
AB is entangled if ρ̃

(j1)
AB is entangled. Our

main problem of determining the values of the QBER for
which Alice and Bob share provable entanglement can be
reduced therefore to the estimation of the values of D for
which the most general two-qubit state ρ̃

(j1)
AB (which is in-

variant under both Abelian discrete groups) is entangled.
The hermitian operators U(g1) and U(g2) of the group

G1 constitute already a complete set of commuting oper-
ators in the Hilbert space of two qubits and the corre-
sponding eigenstates are the Bell states [32]. Thus, the
most general two-qubit state which is invariant under the
Abelian group G1 is given by

ρ̃
(j1)
AB = λ00 |Φ+〉〈Φ+| + λ10 |Φ−〉〈Φ−|

+ λ01 |Ψ+〉〈Ψ+| + λ11 |Ψ−〉〈Ψ−| , (11)

with λαβ ≥ 0 and
∑

α,β∈{0,1}
λαβ = 1, (12)

while additional invariance under the discrete group G2

implies that

λ01 = λ10. (13)

Thus, the state (11) with the constraint (13) is the
most general two-qubit state invariant under the Abelian
groups G1 and G2.

For later convenience let us rewrite the state ρ̃
(j1)
AB in

the computational basis, i.e.

ρ̃
(j1)
AB =

1
2

⎛
⎜⎜⎜⎝

D 0 0 G

0 F H 0
0 H F 0
G 0 0 D

⎞
⎟⎟⎟⎠ , (14)

with F = 1 − D denoting the so-called fidelity, i.e. the
total probability for Bob to receive the submitted signal
undisturbed. Furthermore, the remaining parameters are
given by

D = λ00 + λ10, F = λ01 + λ11,

G = λ00 − λ10, H = λ01 − λ11, (15)

with D denoting the disturbance (QBER). In general, the
parameters G and H can be expressed in terms of the
overlaps between different states of Eve’s probe and are
thus intimately connected to the eavesdropping strategy.
The key point for the subsequent discussion, is that for the
estimation of the threshold disturbance it is not required
to know the explicit form of the “macroscopic” parameters
G and H and their detailed dependences on Eve’s attack.
More precisely, using equations (15), the constraints (12)
and (13) read

F + D = 1 (16)
F + H = D − G (17)

respectively, while non-negativity of the eigenvalues λαβ

implies

D ≥ |G|, (18)
F ≥ |H |. (19)

The possible values of the estimated disturbance for which
ρ̃
(j1)
AB is entangled can be estimated by means of the fully-

entangled fraction (see [24]) or the Peres-Horodecki crite-
rion [36]. Using the latter, we have that ρ̃

(j1)
AB is separable

if and only if the inequalities

D ≥ |H |, (20)
F ≥ |G|, (21)

are satisfied. As depicted in Figure 1, these last in-
equalities combined with inequalities (18, 19) and equa-
tions (16, 17) imply that the symmetrized state ρ̃

(j1)
AB is

entangled if and only if the estimated QBER is below 1/4
or above 3/4. Given, however, that the states ρ̃

(j1)
AB and
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Fig. 1. BB84 protocol: region of the independent parameters

D(QBER) and H for which the two-qubit state ρ̃
(j1)
AB is separa-

ble (shaded region). The various constraints that these param-
eters satisfy are indicated by straight dotted lines. Specifically,
(a) equation (20); (b) equation (19); (c) equations (18) and
(16, 17); (d) equations (21) and (16, 17). The protocol oper-
ates in the region which is defined by the solid lines.

ρ
(j1)
AB are related via local operations and convex summa-

tion, the original single-pair state ρ
(j1)
AB must also be en-

tangled in the same regime of parameters. Moreover, the
probability that the QBER has been underestimated dur-
ing the verification test is exponentially small in nc (see
Sect. 2.3 and related references). Hence we may conclude
that, whenever Alice and Bob detect an average QBER
below 1/4 (or above 3/4), they can be confident that they
share entanglement with probability exponentially close
to one (∼1 − 2−nc), and their correlations cannot have
originated from a separable state. The necessary precon-
dition for secret-key distillation is therefore fulfilled for
estimated disturbances within these intervals.

On the contrary, for 1/4 ≤ D ≤ 3/4 we have that
ρ̃
(j1)
AB is separable. Of course, this does not necessarily im-

ply that ρ
(j1)
AB is also separable. But it does indicate that

in this regime of parameters, Alice’s and Bob’s correla-
tions within the framework of the BB84 protocol can be
explained by a separable state, namely by ρ̃

(j1)
AB . So, ac-

cording to [22,23], this implies that Alice and Bob can-
not extract a secret key and must abort the protocol.
From now on we focus on the regime of practical interest
(F ≥ D), where the lowest possible threshold disturbance
(Dth = 1/4) is attained for G = H = −1/4.

3.2 Six-state protocol

The threshold disturbances for the six-state protocol can
be determined in the same way. In this case, however, all
three bases are used with the same probabilities and thus
the average estimated disturbance (QBER) reads

D =
1
3

2∑
b=0

Tr(j1)
A,B

{[(
T b

A ⊗ T b
B

)
P

(
T b†

A ⊗ T b†
B

)]
j1

ρ
(j1)
AB

}

(22)
where the unitary (but not hermitian) transformation T
is defined in equation (3).

In analogy to the BB84 protocol, exploiting the sym-
metries underlying equation (22) one finds that D is in-
variant under the transformations

(l, b) → (l ⊕2 1, b), (l, b) → (l, b ⊕3 1),
(l, b) → (l, b ⊕3 2), (23)

with ⊕3 denoting addition modulo 3. Furthermore, the
invariance of D under the transformations (23) implies
that the reduced density operators ρ

(j1)
AB and

ρ̃
(j1)
AB =

1
12

∑
g∈G1,t∈G3

U(t)U(g)ρ(j1)
AB U(g)†U(t)† (24)

yield the same average QBER. This latter state is invari-
ant under the discrete Abelian groups G1 [with elements
given in Eq. (9)] and G3 = {t1, t2, t3} with elements

U(t1) = TA ⊗ TB, U(t2) = T 2
A ⊗ T 2

B ,

U(t3) = 1A ⊗ 1B. (25)

The most general two-qubit state invariant under the
Abelian groups G1 and G3 is now of the form (11), with

λ00 = λ10 = λ01. (26)

Thus, in the computational basis ρ̃
(j1)
AB is given by (14)

with

D = 2λ00, F = λ11 + λ00,

G = 0, H = λ00 − λ11. (27)

Accordingly, condition (17) now reads

F + H = D, (28)

while non-negativity of the eigenvalues λαβ implies in-
equality (19) only. Finally, applying the Peres-Horodecki
criterion one finds that ρ̃

(j1)
AB is separable if and only if

inequality (20) is satisfied.
As a consequence of equations (16, 28) and G = 0,

there is only one macroscopic independent parame-
ter in our problem, say H , while combining inequali-
ties (19) and (20) with equations (16) and (28) we ob-
tain that the reduced density operator ρ̃

(j1)
AB is separable

iff 1/3 ≤ D ≤ 2/3 (Fig. 2). That is, no matter how power-
ful the eavesdropper is, Alice and Bob share always prov-
able entanglement for estimated disturbances smaller than
1/3. The lowest disentanglement border for the six-state
scheme (Dth = 1/3) is attained for H = −1/3. It is also
worth noting that, in contrast to BB84, in the six-state
protocol there is only one disentanglement threshold since
for D > 2/3 the protocol is not valid.

As expected, the bound for the six-state protocol is
higher than the one for the BB84 protocol. In fact, as a
consequence of the high symmetry of the six-state proto-
col, the disentanglement area of the BB84 scheme (shaded
region in Fig. 1) shrinks to a line in Figure 2 (thick line).
As will be seen later on, this “degeneracy” affects sig-
nificantly the options of a potential eavesdropper in the
framework of the six-state protocol, increasing thus the
robustness of the protocol.
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Fig. 2. Six-state protocol: region of the parameters D(QBER)

and H for which the two-qubit state ρ̃
(j1)
AB is separable (thick

solid line). The various constraints that these parameters sat-
isfy are indicated by straight dotted lines. Specifically, (a) equa-
tion (20); (b) equation (19); (c) equations (16) and (28). The
protocol operates along the solid lines.

4 The price of disentanglement

In QKD issues, Eve’s attack is usually optimized by maxi-
mizing her Shannon information (or the probability of her
guessing correctly Alice’s bit-string) conditioned on a fixed
disturbance. Given, however, that the unconditional secu-
rity of the BB84 and six-state cryptographic schemes is
beyond doubt, Eve might be willing to reduce the robust-
ness of the protocols to the lowest possible level while si-
multaneously maximizing any of her properties [19]. Thus,
what remains to be clarified now is the cost at which Eve
can saturate the lowest disentanglement threshold Dth, in
terms of her information gain and probability of correct
guessing. To this end, we have to consider in detail the
eavesdropping attack on the BB84 and the six-state pro-
tocols.

Such an investigation, however, is practically feasible
only in the context of attacks on a few qubits. As the num-
ber of attacked qubit-pairs increases the complete treat-
ment of the problem becomes intractable due to the large
number of independent parameters involved. In this sec-
tion we will focus on incoherent and two-qubit coherent at-
tacks. The disentanglement of Alice and Bob in the frame-
work of incoherent attacks has been extensively studied in
the literature [17–21]. In most of these studies, however,
Eve’s attack is by default optimized to provide her with
the maximal Shannon information. On the contrary, here
we give Eve all the flexibility to adjust her parameters
in order to break entanglement between Alice and Bob
and simultaneously maximize her properties. Finally, for
the two QKD protocols under consideration, we are not
aware of any related previous work on disentanglement in
the context of coherent attacks.

4.1 BB84 protocol

4.1.1 Incoherent attacks

Incoherent attacks belong to the class of the so-called
single-qubit or individual attacks, where Eve manipulates

Fig. 3. BB84 protocol — Incoherent attacks: (a) Eve’s proba-
bility of guessing correctly the transmitted message as a func-
tion of disturbance D. The solid line corresponds to an attack
that maximizes Eve’s probability of success in guessing, while
each square denotes the corresponding probability for an attack
which in addition, disentangles Alice and Bob at the specific
disturbance. (b) As in (a) but for Eve’s information gain. The
vertical dotted lines correspond to the solid curves, and denote
the disturbance D(1) ≈ 30% up to which Alice and Bob share
an entangled state. The vertical dashed lines denote the low-
est disentanglement threshold disturbance Dth = 1/4 which
can be attained in the context of general coherent attacks and
intercept-resend strategies.

each transmitted qubit individually. To this end, she at-
taches a single probe (initially prepared in e.g. state |0E〉)
to each transmitted qubit and lets the combined system
undergo a unitary transformation of the form [13,37,38]

|0B〉 ⊗ |0E〉 →
√

F |0B〉 ⊗ |φ0〉 +
√

D |1B〉 ⊗ |θ0〉,
|1B〉 ⊗ |0E〉 →

√
F |1B〉 ⊗ |φ1〉 +

√
D |0B〉 ⊗ |θ1〉, (29)

with F and D being the fidelity and disturbance respec-
tively, while |φj〉 and |θj〉 are normalized states of Eve’s
probe when Bob receives the transmitted qubit undis-
turbed (probability F ) and disturbed (probability D), re-
spectively. Applying unitarity and symmetry conditions
on this transformation one finds that the states |φj〉 are
orthogonal to the states |θj〉 (j ∈ {0, 1}), while the over-
laps 〈φ0|φ1〉 and 〈θ0|θ1〉 are real-valued [13,37,38]. Thus,
an incoherent attack can be described by the four param-
eters satisfying equations (16–19) with H = −F 〈φ0|φ1〉
and G = −D〈θ0|θ1〉. In other words, there are only two
independent parameters and by fixing one of them, say
D, one is able to determine any property of the attack. In
Figure 3, we present Eve’s optimal information gain and
probability of success in guessing the transmitted qubit
correctly as functions of the disturbance (solid line). The
optimization is performed in the usual way, i.e. for a fixed
disturbance D, Eve’s mutual information with Alice is
maximized [13,38]. It is also known that such an opti-
mized strategy disentangles the qubits of Alice and Bob
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at D(1) ≈ 30% (vertical dotted line) [17], which is well
above Dth = 25%. Thus, the natural question arises is
whether, under the assumption of incoherent attacks, Eve
can saturate the lowest possible disentanglement border
Dth and if yes, at which cost of information loss.

To answer this question, for a fixed disturbance D, we
calculated numerically all the possible values of G and
H which are consistent with the constraints (16–19) and
which yield a separable state of Alice and Bob. In gen-
eral, at any given disturbance there is more than one
combination of values of G and H which fulfill all these
constraints. For each of these combinations, we calcu-
lated Eve’s information gain and her probability of cor-
rect guessing [13,38]. The results presented as squares in
Figure 3, refer to those combinations of parameters which,
not only disentangle the two honest parties for a partic-
ular disturbance D, but which simultaneously maximize
Eve’s property as well. Clearly, for disturbances close to
Dth, the two strategies are not equivalent since they yield
substantially different results. In other words, an optimal
incoherent attack that maximizes Eve’s information gain
is certainly not the one which achieves the lowest possi-
ble robustness bound. Furthermore, our simulations show
that saturation of Dth = 1/4 is feasible at the cost of ∼4%
less information gain of Eve or equivalently at the cost of
∼7.44% less probability of success in guessing.

4.1.2 Two-qubit coherent attacks

In a two-qubit coherent attack, Eve attaches one probe
to two of the qubits sent by Alice. Let |mB〉 with
m ∈ {0, 1, 2, 3}, be the message sent from Alice to Bob
in binary notation. The combined system then undergoes
a unitary transformation of the form [38]

⎛
⎜⎜⎜⎝

|0B〉
|1B〉
|2B〉
|3B〉

⎞
⎟⎟⎟⎠ ⊗ |0E〉 → E ⊗

⎛
⎜⎜⎜⎝

|0B〉
|1B〉
|2B〉
|3B〉

⎞
⎟⎟⎟⎠ , (30)

where E is a 4×4 matrix which contains normalized states
in the Hilbert space of Eve’s probe

E ≡

⎛
⎜⎜⎜⎜⎝

√
α |φ0〉

√
β |θ0〉

√
β |ω0〉

√
γ |χ0〉√

β |θ1〉
√

α |φ1〉
√

γ |χ1〉
√

β |ω1〉√
β |ω2〉

√
γ |χ2〉

√
α |φ2〉

√
β |θ2〉

√
γ |χ3〉

√
β |ω3〉

√
β |θ3〉

√
α |φ3〉

⎞
⎟⎟⎟⎟⎠ .

The states φj , θj , ωj and χj denote Eve’s probe states
in cases in which Bob receives all the transmitted qubits
undisturbed, one qubit disturbed or both transmitted
qubits disturbed.

Applying unitarity and symmetry conditions on equa-
tion (30), the problem can be formulated in terms of the
following four mutually orthogonal subspaces [38]

Sφ = {φ0, φ1, φ2, φ3}, Sχ = {χ0, χ1, χ2, χ3},
Sθ = {θ0, θ1, θ2, θ3}, Sω = {ω0, ω1, ω2, ω3},

Fig. 4. BB84 protocol — Two-qubit coherent attacks: Eve’s
probability of guessing correctly a two-bit transmitted message
as a function of disturbance D. The solid line corresponds to an
attack that maximizes Eve’s probability of success in guessing
only, while each square denotes the corresponding probability
for an attack that, in addition, disentangles Alice and Bob at
the specified disturbance. The vertical dotted line corresponds
to the solid curve, and denotes the disturbance D(2) ≈ 28% up
to which Alice and Bob share an entangled state. The vertical
dashed line denotes the lowest possible disentanglement thresh-
old disturbance Dth = 1/4 that can be attained in the context
of general coherent attacks and intercept-resend strategies.

while all the overlaps between the various states within
each of these subspaces are real-valued. Thus, Eve is
able to infer with certainty whether Bob has received
both qubits undisturbed (Sφ), one qubit disturbed (Sθ,ω)
or both qubits disturbed (Sχ). These events occur with
probabilities α, 2β and γ, respectively. It can be shown
that a general coherent two-qubit attack can be described
in terms of five independent parameters [38]. The aver-
age reduced density matrix for Alice and Bob is then
of the form (14), with F = α + β, D = β + γ, H =
−(α〈φ0|φ1〉+ β〈θ0|θ2〉), G = −(γ〈χ0|χ1〉 + β〈θ0|θ1〉), sat-
isfying the constraints (16–19).

Compared to an incoherent attack, a two-qubit coher-
ent attack can improve the probability that Eve guesses
correctly the whole two-bit message sent by Alice to
Bob [38]. Eve’s optimal probability of success in guessing
is plotted in Figure 4 (solid line), as a function of dis-
turbance D. This curve has been obtained by maximizing
Eve’s probability of success in guessing conditioned on a
fixed disturbance D. For such an optimal attack, we found
numerically that Alice and Bob share entanglement up to
disturbances of the order of D(2) ≈ 28% (dotted vertical
line). This is in contrast to the bound D(1) ≈ 30% at-
tained in an optimal incoherent attack. Furthermore, we
also found that Eve is able to saturate the lowest possi-
ble robustness bound (dashed vertical line), at the cost of
∼3% less probability of success in guessing. This loss of
Eve’s probability in guessing is substantially smaller than
the corresponding loss for incoherent attacks (∼7.44%).
Thus, it could be argued that a two-qubit coherent at-
tack which is optimized with respect to the probability
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of guessing only, is very close to an optimal coherent at-
tack which also disentangles Alice and Bob at Dth = 1/4.
The reason is basically that in a two-qubit coherent at-
tack each one of the two independent macroscopic param-
eters G and H can be expressed in terms of two different
overlaps whereas in incoherent attacks the corresponding
dependences involve a single overlap only. In a coherent
attack Eve has therefore more possibilities enabling her to
push the disentanglement border towards the lowest pos-
sible value, while simultaneously maximizing her proba-
bility of guessing correctly the transmitted message.

4.2 Six-state protocol

So far, we have considered incoherent and coherent at-
tacks in the context of the BB84 protocol where Eve’s
attack is determined by a set of two macroscopic param-
eters (G, H). These two independent parameters give a
considerable flexibility to Eve since at a given disturbance
there exists a variety of physically allowed attacks. This
fact is also reflected in Figure 1 where, for a specific dis-
turbance, Alice and Bob can be disentangled for different
values of H (and therefore of G).

In the highly symmetric six-state protocol, however,
the situation is much simpler. In fact, the high sym-
metry of the protocol reduces significantly the options
of an eavesdropper since there is only one indepen-
dent macroscopic parameter in our problem, namely H .
Moreover, the analysis of the attacks under considera-
tion becomes rather straightforward [39]. In particular,
for incoherent attacks G = −D〈θ0|θ1〉 = 0 which indi-
cates that Eve has full information about the disturbed
qubits received by Bob. However, as depicted in Fig-
ure 2, at a given value of D there is a unique value
of H consistent with the laws of quantum mechanics.
It is determined by equations (16) and (28) [line (c) in
Fig. 2]. Similarly, for the two qubit coherent attack we
have 〈χ0|χ1〉 = 〈θ0|θ1〉 = 0 and thus G = 0, whereas
H = −(α〈φ0|φ1〉 + β〈θ0|θ2〉) = −(α − γ) = 2D − 1. As a
result, for both incoherent and two-qubit coherent attacks,
the physically allowed attack is the one that maximizes
Eve’s probability of guessing and simultaneously disentan-
gles Alice and Bob at a given disturbance. It is sufficient
for Eve therefore to optimize her attack with respect to
her probability of correct guessing in order to disentangle
Alice and Bob at the lowest possible disturbance.

5 Entanglement and intrinsic information

So far, we have discussed for both the four- and six-
state protocols the maximal disturbance up to which Alice
and Bob share entanglement. Clearly, this bound indi-
cates that in principle secret-key generation is feasible by
means of a quantum purification protocol. In this section
we show that, at least in the context of incoherent attacks,
a two-way classical protocol, the so-called advantage dis-
tillation protocol, exists which can tolerate precisely the

same amount of disturbance as a quantum purification
protocol.

To this end, we adopt Maurer’s model for classical
key agreement by public discussion from common infor-
mation [3]. Briefly, in this classical scenario, Alice, Bob
and Eve, have access to independent realizations of ran-
dom variables X, Y and Z, respectively, jointly distributed
according to PXY Z . Furthermore, the two honest parties
are connected by a noiseless and authentic (but otherwise
insecure) channel. In the context of this model, Maurer
and Wolf have shown that a useful upper bound for the
secret-key rate S(X ; Y ||Z) is the so-called intrinsic infor-
mation I(X ; Y ↓ Z) which is defined as

I(X ; Y ↓ Z) = min
Z→Z̄

{I(X : Y |Z)},

where I(X : Y |Z) is the mutual information between
the variables X and Y conditioned on Eve’s variable Z,
while the minimization runs over all the possible maps
Z → Z̄ [40].

For our purposes, we can link this classical scenario
to a quantum one. More precisely, the joint distribu-
tion PXY Z can be thought of as arising from measure-
ments performed on a quantum state |ΨABE〉 shared be-
tween Alice, Bob and Eve. We have, however, to focus
on incoherent attacks where Eve interacts individually
with each qubit and performs any measurements before
reconciliation. Thus, at the end of such an attack the
three parties share independent realizations of the random
variables X , Y and Z. Accordingly, the resulting mixed
state after tracing out Eve’s degrees of freedom is of the
form (14) where H = −F 〈φ0|φ1〉 and G = −D〈θ0|θ1〉. It
turns out [18] that the random variables X and Y are sym-
metric bits whose probability of being different is given by
Prob[X �= Y ] = D whereas Eve’s random variable consists
of two bits Z1 and Z2. The first bit Z1 = X ⊕2 Z shows
whether Bob has received the transmitted qubit disturbed
(Z1 = 1) or undisturbed (Z1 = 0). The probability that
the second bit Z2 indicates correctly the value of the bit
Y is given by

Prob[Z2 = Y ] = δ =
1 +

√
1 − 〈φ0|φ1〉2

2
. (31)

As has been shown by Gisin and Wolf [18], for the sce-
nario under consideration secret key agreement is always
possible iff the following condition holds

D

1 − D
< 2

√
(1 − δ)δ. (32)

More precisely, one can show that if the above condition is
not satisfied, the intrinsic information vanishes whereas,
in any other case there exists a classical protocol that can
provide Alice and Bob with identical keys about which Eve
has negligible information. Such a protocol, for instance
is the so-called advantage distillation protocol which is
described in detail elsewhere [3].

In our case now, considering that Eve has adjusted the
parameters in her attack to disentangle Alice and Bob at
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the lowest possible disturbance, equation (31) yields for
the two protocols

δ =

⎧⎪⎪⎨
⎪⎪⎩

3 + 2
√

2
6

BB84 protocol

2 +
√

3
4

six-state protocol.

Using these values of δ in equation (32) one then obtains
bounds that are precisely the same with the threshold
disturbances for provable entanglement we derived in Sec-
tion 3. In other words we have shown that, as long as Alice
and Bob are entangled, a classical advantage distillation
protocol is capable of providing them with a secret key,
provided Eve restricts herself to individual attacks only
(see also [20,21] for similar results).

This result is a manifestation of the link between quan-
tum and secret correlations in both four- and six-state
QKD protocols [22,23]. For the time being, the validity of
this equivalence between classical and quantum distilla-
tion protocols is restricted to individual attacks only. In-
vestigations of tomographic QKD protocols have shown,
however, that such an equivalence is invalid for coherent
attacks [41].

6 Concluding remarks

We have discussed provable entanglement in the
framework of the BB84 and the six-state QKD proto-
cols under the assumption of coherent (joint) attacks.
In particular, we have shown that the threshold distur-
bances for provable entanglement are 1/4 and 1/3 for the
four- and six-state QKD protocols, respectively. Perhaps
surprisingly, these borders coincide with the disentan-
glement borders associated with the standard intercept-
resend strategy [42,43]. Here we have shown, however,
that even the most powerful eavesdropping attacks (which
are only limited by the fundamental laws of quantum the-
ory), are not able to push these disentanglement borders
to lower disturbances. In other words, for the two proto-
cols under consideration, any eavesdropping attack which
disentangles Alice and Bob gives rise to QBERs above
1/4 (BB84) and 1/3 (six-state). Hence, for estimated dis-
turbances below these borders the two honest parties can
be confident (with probability exponentially close to one)
that their quantum correlations cannot be described in the
context of separable states and can be explored therefore
for the extraction of a secret key.

In particular, for the entanglement-based versions of
the protocols such a secure key can be obtained after
applying an EPP which purifies the qubit pairs shared
between Alice and Bob. Nevertheless, for the prepare-and-
measure forms of the protocols the situation is more in-
volved. To the best of our knowledge, the highest tolerable
error rates that have been reported so far in the context
of the prepare-and-measure BB84 and six-state schemes
are close to 20% and 27%, respectively [4,5]. These best
records are well below the corresponding threshold distur-
bances we obtained in this work. Thus, an interesting open

problem is the development of prepare-and-measure pro-
tocols which bridge the remaining gap and are capable of
generating a provably secure key up to 25% and 33.3%
bit error rates. In view of the fundamental role of en-
tanglement in secret key distribution such a development
appears to be plausible. For this purpose, however, con-
struction of new appropriate EPPs with two-way classical
communication, which are consistent with the prepare-
and-measure schemes, is of vital importance.

Furthermore, we have investigated the cost of infor-
mation loss at which an eavesdropper can saturate these
bounds in the context of symmetric incoherent and two-
qubit coherent attacks. We have found that for the highly
symmetric six-state scheme, there is always a unique
eavesdropping attack which disentangles Alice and Bob
at a fixed disturbance (above 1/3) and simultaneously
maximizes Eve’s information gain and/or probability of
guessing. For the BB84 protocol, however, the situation is
substantially different. Specifically, an attack which max-
imizes any of Eve’s properties (information gain or proba-
bility of success in guessing) is not necessarily also the one
that yields the lowest possible robustness bound. In fact,
if Eve aims at reducing the robustness of the BB84 proto-
col she has to accept less information gain and probabil-
ity of correct guessing. Nevertheless, our simulations show
that for a two-qubit coherent attack this cost is substan-
tially smaller than the cost for an incoherent attack. We
conjecture therefore that, for coherent attacks on a larger
number of qubits, the strategy that maximizes Eve’s prob-
ability of success in guessing, is also the one that defines
the lowest possible disentanglement threshold.

In closing, it should be stressed that the bounds we
have obtained throughout this work depend on the post-
processing that Alice and Bob apply. In particular, they
rely on the complete omission of any polarization data
from the raw key that involve different bases for Alice
and Bob as well as on the individual manipulation of each
pair of (qu)bits during the post-processing. In other words
only one observable is estimated, namely the disturbance
or QBER. If some of these conditions are changed, also the
threshold disturbances may change. In this context it was
demonstrated recently that with the help of entanglement
witnesses which are constructed from the data of the raw
key, the detection of quantum correlations between Alice
and Bob is feasible even for QBERs above the bounds we
have obtained here [22].

Stimulating discussions with Nicolas Gisin and Norbert
Lütkenhaus are gratefully acknowledged. This work is sup-
ported by the EU within the IP SECOQC.
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